InterviewSolution
Saved Bookmarks
| 1. |
If the roots of (a – b)x2 + (b – c)x + (c – a) = 0 are real and equal, then prove that b, a, c are in arithmetic progression. |
|
Answer» (a – b)x2 + (b – c)x + (c – a) = 0 A = (a – b), B = (b – c), C = (c – a) Δ = b2 – 4ac = 0 ⇒ (b – c)2 – 4(a – b)(c – a) ⇒ b2 – 2bc + c2 - 4 (ac – bc – a2 + ab) ⇒ b2 – 2bc + c2 – 4ac + 4bc + 4a2 – 4ab = 0 ⇒ 4a2 + b2 + c2 + 2bc – 4ac – 4ab = 0 ⇒- (-2a + b + c)2 = 0 [∵ (a + b + c) = a2 + b2 + c2 + 2ab + 2bc + 2ca)] ⇒ 2a + b + c = 0 ⇒ 2 a = b + c ∴ a, b, c are in A.P. |
|