1.

If the roots of (a – b)x2 + (b – c)x + (c – a) = 0 are real and equal, then prove that b, a, c are in arithmetic progression.

Answer»

(a – b)x2 + (b – c)x + (c – a) = 0 

A = (a – b), B = (b – c), C = (c – a) 

Δ = b2 – 4ac = 0 

⇒ (b – c)2 – 4(a – b)(c – a) 

⇒ b2 – 2bc + c2 - 4 (ac – bc – a2 + ab) 

⇒ b2 – 2bc + c2 – 4ac + 4bc + 4a2 – 4ab = 0 

⇒ 4a2 + b2 + c2 + 2bc – 4ac – 4ab = 0 

⇒- (-2a + b + c)2 = 0 [∵ (a + b + c) = a+ b2 + c+ 2ab + 2bc + 2ca)] 

⇒ 2a + b + c = 0 

⇒ 2 a = b + c 

∴ a, b, c are in A.P.



Discussion

No Comment Found