1.

If the roots of the equation (c2 - ab)x2 - 2(a2 - bc) x + b2 - ac = 0 are equal, prove that either a = 0 or a3 + b3 + c3 = 3abc.

Answer»

For a quadratic equation, ax2 + bx + c = 0, 

D = b2 – 4ac 

If D = 0, roots are equal 

Given, 

roots of (c2 - ab)x2 - 2(a2 - bc) x + b2 - ac = 0 are equal. 

∴ D = 0 

⇒ 2(a2 – bc)]2 – 4(c2 – ab)(b2 – ac) = 0 

⇒ 4(a2 – bc)2 – 4(c2 – ab)(b2 – ac) = 0 

⇒ a4 + b2c2 – 2a2bc – b2c2 – a2bc + ab3 + ac3 = 0 

⇒ a(a3 + b3 + c3 – 3abc) = 0 

⇒ a = 0 or a3 + b3 + c3 = 3abc



Discussion

No Comment Found