1.

If the roots of the equation (c2 – ab)x2 – 2(a2 – bc)x + (b2 – ac) = 0 for a ≠ 0 are real and equal, then the value of a3 + b3 + c3 is :(a) abc (b) 3abc (c) 0 (d) None of these

Answer»

(b) 3abc

Given that the roots are real and equal, 

D =0 ⇒ b2 – 4ac = 0 for ax2 + bx + c = 0.

∴ [–2(a2 – bc)]2 – 4(c2 – ab) (b2 – ac) = 0

⇒ 4[a4 + b2c2 – 2a2bc – c2b2 + ac3 + ab3 – a2bc) = 0 

⇒ 4a (a3 + b3 + c3 – 3 abc) = 0 

⇒ a3 + b3 + c3 = 3abc.



Discussion

No Comment Found