InterviewSolution
Saved Bookmarks
| 1. |
If the solution of the differential equation `(dy)/(dx)-y=1-e^(-x)`and `y(0)=y_0`has afinite value, when `xvecoo,`then thevalue of `|2/(y_0)|`is__ |
|
Answer» Correct Answer - 4 `(dy)/(dx) -y=1-e^(-x)` `P=-1,Q=1-e^(-x)` I.F`. E^(intPdx)=e^(int-1dx)=e^(-x)` `therefore y.e^(-x)=inte^(-x)(1-e^(-x))dx+C` `=e^(-x)+1/2e^(-2x)+C` When, `x=0, y=y_(0)+1/2` So, `C=y_(0)+1/2` `y=-1+1/2e^(-x) +(y_(0)+1//2)e^(x)` When `x to infty y` takes finite value. So, `y_(0)+1//2=0` or `y_(0)=-1//2` |
|