InterviewSolution
Saved Bookmarks
| 1. |
If the solution of the equation `(d^(2)x)/(dt^(2))+4(dx)/(dt)+3x = 0` given that for `t = 0, x = 0 and (dx)/(dt) = 12` is in the form `x = Ae^(-3t) + Be^(-t)`, thenA. `A + B = 0`B. `A + B = 12`C. `|AB| = 36`D. `|AB| = 49` |
|
Answer» Correct Answer - A::C `x = Ae^(-3t) + Be^(-t)` `therefore" "(dx)/(dt)= -3Ae^(-3t) - Be^(-t)` When t = 0, x = 0 `therefore" "A + B = 0" "(i)` At t = 0, `(dx)/(dt) = 12` `therefore" "12 = -3A - B" "(ii)` Solving, we get A = -6, B = 6. |
|