1.

If the term free form x in the expansion of `(sqrt(x)-m/(x^(2)))^(10)` is 405, find the value of m.

Answer» The general term in the given expansion is given by
`T_(r+1) = (-1)^(r) xx .^(10) C_(r) xx (sqrt(x))^((10-r)) xx (m/(x^(2)))^(r)`
`=(-1)^(r) xx .^(10) C _(r) xx x^((5-r/2)) xx (m^(r))/(x^(2r))`
`= (-1)^(r) xx . ^ (10) C _(r) xx x ^((5-r/2-2r)) xx m ^(r)`
`= (-1)^(r) xx.^(10)C_(r) xx x^((5-(5r)/2)) xx m^(r)." "`...(i)
Let `T_(r+1)` be free from x.
Then, the power of x in `T_(r+1)` must be 0.
`:. 5 - (5r)/2 = 0 rArr (5r)/2 = 5 rArr r=2 rArr r+1 = 3 .`
So, `T_(3)` will be free from x.
Now, `T_(3) = T_(2+1)`
`=(-1)^(20 )xx .^(10) C _(2) xx x^(0) xx m ^(2) " "` [putting r=2 in (i) ]
`= ( (10 xx 9)/2 xx m^(2)) = 45m^(2).`
But, it is given that the term free from x is 405.
`:. 45m^(2) = 405 rArr m^(2) = 9 rArrm = pm3.`
Hence, `m=pm 3.`


Discussion

No Comment Found

Related InterviewSolutions