1.

If the third term in the binomial expansion of (1 - x)k is (1/4)x2 then the rational value of k is1. \(\frac 12\)2. \(- \frac 34\)3. 34. None of these

Answer» Correct Answer - Option 4 : None of these

Concept:

(1 + x)n  = [nC+ nC1 x + nC2 x+ … +nCn xn]

 

Calculation:

Given:  (1 - x)k and the third term of the expansion is (-1/4)x2

Expansion of (1 - x)k =  [kC0 - kC1 x + kC2 x+ …]

So the third term = kC2 x2 = (-1/4)x2

\(\rm \Rightarrow \frac{k!}{2!(k-2)!}=\frac 1 4\)

\(\rm \Rightarrow \frac{k\times (k-1)\times (k-2)!}{2(k-2)!}=\frac 1 4\)

\(\rm \Rightarrow \frac{k\times (k-1)}{2}=\frac 1 4\)

\(\rm \Rightarrow k^2-k=\frac 1 2\)

\(\rm \Rightarrow 2k^2-2k- 1 =0\)                     .....(Multiply by 2 on both the sides)

\(\rm \Rightarrow k = \frac {2 \pm \sqrt {12}}{4} = \frac {1 \pm \sqrt {3}}{2}\)

\(\Rightarrow \rm k = \frac {1 \pm \sqrt {3}}{2}\)

Hence, option (1) is correct.



Discussion

No Comment Found

Related InterviewSolutions