1.

If the total surface area of the cubical room is 27 cm2. Find the length of the longest rod inside the cubical room.1. 1/√6 cm2. 2√2/√3 cm3. 3√2/√3 cm4. 3√3/√2 cm

Answer» Correct Answer - Option 4 : 3√3/√2 cm

Given:

TSA = 27 cm2

Formula used:

TSA = 6a2   (where a is the side of the cube)

Diagonal =  length of the longest rod inside the cubical room = a√3

Calculations:

According to the question, 6 × a2 = 27

⇒ a2 = 27/6

⇒ a2 = 9/2

⇒ a = 3/√2 cm

⇒ Diagonal = (3/√2) × √3

⇒ Diagonal = 3√3/√2 cm

∴  The length of the longest rod inside the cubical room is 3√3/√2 cm.



Discussion

No Comment Found

Related InterviewSolutions