1.

If the zeroes of the polynomial f(x) = x3 – 3x2 + x + 1 are (a – b), a and (a + b), find the values of a and b.

Answer»

By using the relationship between the zeroes of he quadratic polynomial. 

We have, 

Sum of zeroes = \(\frac{-(coefficient\,of\,x^2)}{coefficient\,of\,x^3}\)

∴ a – b + a + a + b = \(\frac{-(-3)}1\)

⇒ 3a = 3

⇒ a = 1 

Now, 

Product of zeroes = \(\frac{-(constant\,term)}{coefficient\,of\,x^3}\)

∴ (a – b) (a) (a + b) = \(\frac{-1}1\) 

⇒ (1 – b) (1) (1 + b) = –1 [∵a =1] 

⇒ 1 – b2 = –1 

⇒ b2 = 2 

⇒ b = ±√2



Discussion

No Comment Found