1.

If u(x) = (x – 1)2 and v(x) = (x2 – 1) then, verify the relation L.C.M. × H.C.F. = u(x) × v(x).

Answer»

u(x) = (x – 1)2

⇒ u(x) = (x – 1)(x – 1)

and v(x) = (x2 – 1) 

= (x – 1)(x + 1)

Product of common least powers 

= (x – 1)

H.C.F. = (x – 1)

Product of highest power of prime factors 

= (x – 1)2(x + 1)

L.C.M. = (x – 1)2(x + 1)

Test:

u(x) × v(x) = (x – 1)2 × (x2 – 1) 

= (x – 1)2(x2 – 1)

and H.C.F. × L.C.M. 

= (x – 1)(x – 1)2(x + 1) 

= (x – 1)2(x2 – 1)

So, L.C.M. × H.C.F. = w(x) × v(x).



Discussion

No Comment Found