1.

If  \(\vec a\) and  \(\vec b\) are unit vectors and θ is the angle between them, then prove that \(sin\frac\theta 2=\frac12|\vec a - \vec b|.\)

Answer»

\(\vec a .\vec b= |\vec a| |\vec b| cos \theta\)

⇒ \(\vec a .\vec b= cos \theta\)        \((|\vec a|= |\vec b|=1)\)

Now,

\(|\vec a - \vec b|^2 = (\vec a - \vec b).(\vec a - \vec b)\)

\(= \vec a .\vec a - 2\vec a.\vec b + \vec b. \vec b \)

\(=|a|^2 - 2cos \theta + |\vec b|^2\)

\(= 1 - 2cos \theta + 1 \)       \((\because |\vec a| = |\vec b| = 1)\)

\(= 2 (1 - cos \theta )\)

\(= 2 (1 - (1 - 2sin^2 \frac\theta 2))\)

\(= 4 sin^2\frac\theta 2\)

⇒ \(sin^2 \frac\theta2 = \frac14 |\vec a - \vec b|^2\)

⇒ \(sin \frac\theta2 = \frac12 |\vec a - \vec b|\)



Discussion

No Comment Found

Related InterviewSolutions