1.

If vector a = 2i - j + 2k and vector b = -i + j - k then find a unit vector in the direction of vector(a + b).

Answer»

Here, vector a = 2i - j + 2k

and vector b = -i + j - k

∴ vector(a + b) = i + 0, j + k = i + k

∴ vector|a + b| = √(12 + 02 + 12) = √2

So, unit vector in the direction of 

vector(a + b) = vector((a + b)/|a + b|) = (i + k)/√2

= (1/√2)i + (1/2)j



Discussion

No Comment Found