1.

If vector (a x b ) x c) = vector (a x ( b x c) , then prove that either vector a is parallel to vector c or vector b is perpendicular to both vector(a , c) 

Answer»

Given that

vector (a x b ) x c) = vector (a x ( b x c ) 

vector (a • c ) b) – vector (b • c ) a) = vector(c • a ) b) – vector( b • a) c)

 Since , vector(a • c) = vector (c • a)

 vector (b • c) a) =  vector (b • a ) c)

 p  vector a = q  vector c

by taking, vector (b • c) = p & vector (b • a)= q 

where , p & q are scalars 

 therefore , vector a is parallel to vector c

Next consider, vector (b • c) a) = vector(b • a) c 

vector (b • c) a) - vector(b • a) c) = 0 

 vector b is perpendicular to both vector (a , c). 



Discussion

No Comment Found

Related InterviewSolutions