InterviewSolution
Saved Bookmarks
| 1. |
If `X=1+a+a^(2)+a^(3)+"..."+infty " and " y=1+b+b^(2)+b^(3)+"..."+infty "` show that `1+ab+a^(2)b^(2)+a^(3)b^(3)+"..."+infty=(xy)/(x+y-1), "where " 0ltalt1" and "0ltblt1`. |
|
Answer» Given, `x=1+a+a^(2)+a^(3)+"..."+infty=(1)/(1-ab)` ` implies x-ax=1` ` therefore a=((x-1))/(x)" " "......(i)"` and `y=1+b+b^(2)+b^(3)+"..."+infty` Similarly, ` b=((y-1))/(y)" " "......(ii)"` Since, `0ltalt1,0ltblt1` `therefore 0ltablt1` Now, `1+ab+a^(2)b^(2)+a^(3)b^(3)+"..."+infty=(1)/(1-ab)` `=(1)/(1-((x-1)/(x))((y-1)/(y)))" " ["from Eqs. (i) and (ii)"]` `=(xy)/(xy-xy+x+y-1)` Hence, `1+ab+a^(2)b^(2)+a^(3)b^(3)+"..."+infty =(xy)/(x+y-1)` |
|