1.

If `x_(1)` and `x_(2)` are the real and distinct roots of `ax^(2)+bx+c=0` then prove that `lim_(xtox1) (1+sin(ax^(2)+bx+c))^((1)/(x-x_(1)))=e^(a(x_(1)-x_(2))).`A. does not existB. 1C. `oo`D. `(1)/(2)`

Answer» `ax^(2)+bx+c=a(x-x_(1))(x-x_(2))`
`underset(xtox1)lim(1+sin(ax^(2)+bx+c))^((1)/(x-x_(1)))" "(1^(oo))" form")`
`=e^(underset(xtox_(1))lim(sin(a(x-x_(1))(x-x_(2))))/((x-x_(1))))`
`=e^(underset(xtox_(1))lim(sin(a(x-x_(1)).(x-x_(2))))/(a(x-x_(1))(x-x_(2))).a(x-x_(2)))`
`=e^(a(x_(1)-x_(2)))`


Discussion

No Comment Found