1.

If (x + 2) and (x + 3) are factors of x3 + ax + b, find the values of ‘a’ and ‘b’. 

Answer»

Given that (x + 2) and (x + 3) are factors of p(x) = x3 + ax + b.

∴ p(- 2) = (- 2)+ 0(- 2) + b = 0 

⇒ – 8 – 2a + b = 0 => – 2a + b = 8 …….(i) 

And p(- 3) = (- 3)3 + a(- 3) + b = 0 

⇒ – 27 – 3a + b = 0 => – 3a + b = 27 ……..(ii) 

Subtracting (i) from (ii), we obtain 

(-3a 4 – b) – (-2a + b) = 27 – 8 

– 3a + b + 2a – b = 19 

-a = 19 

⇒ a = 19 

From (i), we obtain 

– 2(19) + b = 8 

– 38 + b = 8 

⇒ b = 8 + 38 

⇒ b = 46 

Hence, the values of a and b are a = 19 and b = 46.



Discussion

No Comment Found

Related InterviewSolutions