1.

If (x – 2) is a factor of x3 – mx2 + 10x – 20, then find the value of m.

Answer»

p(x) = x3 – mx2 + 10x – 20 x – 2 is a factor of x3 – mx2 + 0x – 20. 

∴By factor theorem, 

Remainder = p(2) = 0 

p(x) = x– mx2 + 10x – 20 

∴ p(2) = (2)3 – m(2)2 + 10(2) – 20 

∴ 0 = 8 – 4m + 20 – 20 

∴ 0 = 8 – 4m 

∴ 4m = 8 

∴ m = 2



Discussion

No Comment Found