

InterviewSolution
Saved Bookmarks
1. |
If `x^2!=n pi-1, n in N`. Then, the value of `int x sqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx` is equal to:A. `ln|(1)/(2)sec(x^(2)+1)|+C`B. `ln|sec((x^(2)+1)/(2))|+C`C. `(1)/(2)ln|sec(x^(2)+1)|+C`D. `(1)/(2)ln|(2)/(sec(x^(2)+1))|+C` |
Answer» Correct Answer - B `I=(1)/(2)int2xsqrt((2sin(x^(2)+1)-sin2(x^(2)+1))/(2sin(x^(2)+1)+sin2(x^(2)+1)))dx` `x^(2)+1=t rArr 2x = dt` `I=(1)/(2)intsqrt((2sint-sin 2t)/(2sin t +sin 2r))dt` `=(1)/(2)intsqrt((2-2cost)/(2+2cost))dt` `=(1)/(2)int tan.(t)/(2)dt` `=(1)/(2)(ln|sec.(t)/(2)|)/((1)/(2))+c` `=ln|sec((x^(2)+1)/(2))|+c` |
|