InterviewSolution
Saved Bookmarks
| 1. |
If `x^2+x+1=0` then the value of `(x+1/x)^2+(x^2+1/(x^2))^2+...+(x^27+1/(x^27))^2` isA. 27B. 72C. 45D. 54 |
|
Answer» Correct Answer - D `x^(2)+x+1=0` `rArr x = omegaor omega^(2)` Let `x = omega`. Then, `x+(1)/(x)=omega+(1)/(omega)=omega+omega^(2)=-1` `x^(2)+(1)/(x^(2))=omega^(2)+(1)/(omega^(3))=omega^(2)+omega=-1` `x^(3)+(1)/(x^(3))=omega^(3)+(1)/(omega^(3))=2` `x^(4)+(1)/(x^(4))=omega^(4)+(1)/(omega^(4))=omega+omega^(2)=-1,` etc. `therefore (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+* * *+(x^(27)+(1)/(x^(27)))^(2)` `=[(x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(4)+(1)/(x^(4)))^(2)+* * *+(x^(26)+(1)/(x^(26)))^(2)]` `+[(x^(3)+(1)/(x^(3)))^(2)+(x^(6)+(1)/(x^(6)))^(2)+(x^(9)+(1)/(x^(9)))^(2)+* * *+(x^(27)+(1)/(x^(27)))^(2)]` `=18+9(2)^(2)=54` |
|