InterviewSolution
Saved Bookmarks
| 1. |
If x = a (sin 0 + cos 0), y = b (sin 0 - cos 0), then \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) =1. 12. 03. 24. 4 |
|
Answer» Correct Answer - Option 3 : 2 Given: x = a (sin 0 + cos 0) y = b (sin 0 - cos 0) Formula used: sin 0 = 0 cos 0 = 1 Calculation: x = a(0 + 1) = a y = b(0 - 1) = - b \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = \(\dfrac{a^2}{a^2}+\dfrac{(- b)^2}{b^2}\) ⇒ \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = 1 + 1 ∴ \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\) = 2 |
|