1.

If `x=asint `and `y=a(cost+logtant/2)`, find `(d^2 y)/(dx^2)`

Answer» `x = asint`
`=>dx/dt = acost`
`y = a(cost+logtan(t/2))`
`=>dy/dt = a(-sint+1/tan(t/2)(1/2sec^2(t/2)))`
`=>dy/dt = a(-sint + 1/(2sin (t/2)cos (t/2)))`
`=>dy/dt = a(-sint + 1/sint)`
`=>dy/dt = a((1-sin^2t)/sint)`
`=>dy/dt = a(cos^2t/sint)`
`=>dy/dt = a(costcot t)`
`=>dy/dx = dy/dt*dt/dx = (acostcott)/(acost )= cott`
`=>(d^2y)/dx^2 = -cosec^2 t*dt/dx`
`=>(d^2y)/dx^2 = -cosec^2 t*(1/(acost))`
`=>(d^2y)/dx^2 = -1/acosec^2tsect`


Discussion

No Comment Found

Related InterviewSolutions