1.

If \(x+\frac{1}{x}=12\) find the value of \(x-\frac{1}{x}\).

Answer»

Given that,

x + \(\frac{1}{x}\) = 12

Squaring both sides, we get

(x + \(\frac{1}{x}\) )2 = 122

x2 + (\(\frac{1}{x}\))2 + 2 × x × \(\frac{1}{x}\) = 144

x2\(\frac{1}{x^2}\) = 142

Subtract 2 from both sides, we get

x2\(\frac{1}{x\times x}\) - 2 × x × \(\frac{1}{x}\) = 142 – 2

(x - \(\frac{1}{x}\))2 = 140

x - \(\frac{1}{x}\)\(\sqrt{140}\)



Discussion

No Comment Found