1.

If \(x-\frac{1}{x}\) =3, find the values of \(x^2+\frac{1}{x^2}\) and \(x^4+\frac{1}{x^4}\).

Answer»

(i) Given that,

x - \(\frac{1}{x}\) = 3

Squaring both sides, we get

(x - \(\frac{1}{x}\))2 = (3)2

x2 - 2 × x × \(\frac{1}{x}\) + (\(\frac{1}{x}\))2 = 9

x2 - 2 + \(\frac{1}{x\times x}\) = 9

x2\(\frac{1}{x\times x}\) = 11

(ii) Squaring both sides, we get

(x2\(\frac{1}{x\times x}\))2 = (11)2

(x2)2 + 2 × x2 × \(\frac{1}{x\times x}\) + (\(\frac{1}{x\times x}\))2 = 121

x4 + 2 + \(\frac{1}{x\times x\times x\times x}\) = 121

x4\(\frac{1}{x\times x\times x\times x}\) = 119



Discussion

No Comment Found