1.

If \(x+\frac{1}{x} = 9\) find the value of \(x^4+\frac{1}{x^4}\)

Answer»

Given that, x + \(\frac{1}{x}\) = 9

Squaring both sides, we get

(x + \(\frac{1}{x}\))2 = 92

x2\(\frac{1}{x\times x}\) + 2 = 81

x2\(\frac{1}{x\times x}\) = 79

Again,

Squaring both sides, we get

(x2\(\frac{1}{x\times x}\) )2 = 792

x4\(\frac{1}{x\times x\times x\times x}\) + 2 = 6241

x4\(\frac{1}{x\times x\times x\times x}\) = 6239



Discussion

No Comment Found