1.

If \(x+\frac{1}{x}\) = p, then \(x^6+\frac{1}{x^6}\) equals to :(a) p6 + 6p (b) p6 – 6p (c) p6 + 6p4 + 9p2 + 2 (d) p6 – 6p4 + 9p2 – 2

Answer»

(d) p6 – 6p4 + 9p2 – 2

Given, \(x+\frac{1}{x}\) = p          ⇒ \(\bigg(x+\frac{1}{x}\bigg)^2\) = p2

⇒ \(x^2+\frac{1}{x^2}+2 = p^2\)    ⇒ \(x^2+\frac{1}{x^2} = p^2 - 2\)

⇒ \(\bigg(x^2+\frac{1}{x^2}\bigg)^3\) = (p2 - 2)3

⇒  \(x^6+\frac{1}{x^6}\) + 3\(\bigg(x^2+\frac{1}{x^2}\bigg)\) = p6 - 8 + 6p2 (p2 - 2)

⇒ \(x^6+\frac{1}{x^6}\) + 3 (p2 - 2) = p6 - 8 + 6p2 (p2 - 2)

⇒ \(x^6+\frac{1}{x^6}\) = p6 - 6p- 9p2 - 2



Discussion

No Comment Found