1.

If `(x , y)`and `(x ,y)`are the coordinates of the same point referred to two sets ofrectangular axes with the same origin and it `u x+v y ,`where `u`and `v`are independent of `xa n dy`, becomes `V X+U Y ,`show that `u^2+v^2=U^2+V^2dot`

Answer» Let the axes rotate at angle `theta`. If `(x,y)` is the point with respect to the old axes and (x,y) are the coordinates with respect to the new axes, then
`{(x,=,Xcostheta-Ysintheta,,),(y,=,Xsintheta+Ycostheta,,):}`
Then `ux+vy=u(Xcostheta-Ysintheta)+v(Xsintheta + Y costheta`
`=(ucostheta +vsintheta )X+(-usintheta +vcos theta )Y`
But given new exression is `VX+UY`. Then,
`VX+UY=(ucostheta +vsintheta )X+(-usintheta +vcos theta) Y`
On comparing the coefficients of X and Y, we get
`ucostheta +vsintheta=V` (1)
and `-usintheta +vcostheta=U` (2)
Squareing and adding (1) and (2) , we get
`u^2+v^2=U^2+V^2`


Discussion

No Comment Found

Related InterviewSolutions