 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Let a,b,c be in A.P and x,y,z be in G.P.. Then the points `(a,x),(b,y)` and `(c,z)` will be collinear ifA. `x^2=y`B. `x=y=z`C. `y^2=z`D. `x=z^2` | 
| Answer» Correct Answer - B Given that a,b,c are in A.P. `rArra-b=b-c` Now, `(a,x),(b,y)and (c,z)` are collinear. `rArr(x-y)/(a-b)=(y-z)/(b-c)` `rArr (x-y)/(y-z)=(a-b)/(b-c)=1` `rArrx-y=y-z` So, x,y,z are in A.P. Thus x,y,z are in A.P and also in G.P. `therefore x=y=z`. | |