1.

If x + y + z = 1, xy + yz + zx = – 1 and xyz = -1, then find the value of x3 + y3 + z3 

Answer»

We know that 

x3 + y3 + z3 – 3 xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) 

=> x3 + y3 + z3 – 3xyz => (x + y + z) (x2 + y2 + z2 + 2xy + 2yz + 2zx – 3xy – 3yz – 3zx) 

(Subtracting and adding 2xy + 2yz + 2zx) 

=> x3 + y3 + z3 – 3xyz = (x + y + z) {(x + y + z)2 – 3(xy + yz + zx)} 

=> x+ y3 + z3 – 3 x (-1) = 1 x {(1) 2 – 3 x (-1)} 

[Putting x + y + z = 1; xy + yz + zx = -1; xyz = -1] 

=> x3 + y3 + z3 + 3 = 4 

=> x3 + y3 + z3 = 4 – 3 

x3 + y3 + z3 = 1



Discussion

No Comment Found

Related InterviewSolutions