1.

If x1,x2,x3,x4 are roots of the equation x4−x3sin2β+x2cos2β−xcosβ−sinβ=0 then tan−1x1+tan−1x2+tan−1x3+tan−1x4=

Answer»

If x1,x2,x3,x4 are roots of the equation x4x3sin2β+x2cos2βxcosβsinβ=0 then tan1x1+tan1x2+tan1x3+tan1x4=





Discussion

No Comment Found