Saved Bookmarks
| 1. |
If `y = e^(m) sin^(-1) x and (1-x^(2)) ((dy)/(dx))^(2) = At^(2)` , then A is equal toA. mB. `-m`C. `m^(2)`D. `-m^(2)` |
|
Answer» Correct Answer - C Given `y=e^(m^(sin^(-1)))x ......(i)` On differentiating both sides w.r.t.x. we get `(dy)/(dx)=e^(m^(sin(-1))) (d)/(dx)(m sin^(-1)x)` `Rightarrow (dy)/(dx)=e^(m^(sin^(-1))) (mxx(1)/(sqrt(1-x^(2))))` `Rightarrow sqrt(1-x)^(2) (dy)/(dx)=my " "("from Eq. (i)")` On squaring both sides, we get `(1-x^(2)) ((dy)/(dx))^(2)=m^(2)y^(2)` But it is given `(t-x^(2)) ((dy)/(dx))^(2)=Ay^2` `A=m^(2)` |
|