1.

If `y=f(x)=((x+2))/((x-1)),t h e n``x=f(y)`(b) `f(1)=3``y`increases with `xforx

Answer» Correct Answer - A::D
Given, `y=f(x)=(x+2)/(x-1)`
`rArr yx-y=x+2 rArr x(y-1) = y+2`
`rArr x=(y+2)/(y-1) rArr x=f(y)`
Here, f(1) does not exist, so domain ` in R-{1}`
`(dy)/(dx)=((x-1)*1-(x+2)*1)/((x-1)^(2))`
`= -(3)/((x-1)^(2))`
`rArr` f(x) is decreasing for all ` x in R -{1}.`
Also, f is rational function of x.
Hence, (a) and (d) are correct options.


Discussion

No Comment Found