1.

If `y(x)` is solution of `x(dy)/(dx)+2y=x^(2), y(1)=1` then value of `y(1/2)=` (a) `-(49)/(16)` (b) `(49)/(16)` (c) `(45)/(8)` (d) `-(45)/(8)`A. (a) 13/16B. (b) 1/4C. (c) 49/16D. (d) 7/64

Answer» Correct Answer - (c)
Given differential equation can be rewritten as
`dy/dx + (2/x)cdoty=x,` which is a linear differential equation of
the form `dy/dx + Py =Q.` where`P=2/x and Q=x`
Now, integrating factor
`(IF) = e^(int 2/x dx) =e^(2log x) =e^(log x^(2)=x^(2)`
`[therefore e^(logf(x))=f(x)]`
and the solution is given by
`y(IF)= int (QxxIF) dx + C`
` rArr yx^(2)=int x^(3) dx +C`
` rArr yx^(2)= x^(4)/4+C …(i)`
Since, it is given that Y = 1 when x = 1
`therefore` From Eq. (i). we get
`1=1/4+c rArr c =3/4 …(ii)`
`therefore 4x^(2)y=x^(4)+3` [using Eqs. (i) and (ii) ]
`rArr y=(x^(4)+3)/(4x^(2))`
Now,`y(1/2)=(1/16+3)/(4xx1/4)= 49/16`


Discussion

No Comment Found

Related InterviewSolutions