Saved Bookmarks
| 1. |
If y + x = sin(y + x) then find dy/dx. |
|
Answer» According to, y + x = sin-1(x + y) Differentiating w.r.t. x, (dy/dx) + (dx/dx) = (d sin(x + y)/d(x + y)) x (d(x + y)/dx) (dy/dx) + 1 = (cos(x + y)) x (1 + (dy/dx)) (dy/dx) + 1 = (cos(x + y)) x ((dy/dx)cos(x + y)) {1 - cos(x + y)}(dy/dx) = cos(x + y ) - 1 dy/dx = (1 - cos(x + y))/(1 - cos(x + y)) dy/dx = 1 |
|