1.

If y= y(x) is the solution of the differential equation `dy/dx=(tan x-y) sec^(2)x, x in(-pi/2,pi/2),` such that y (0)=0, than `y(-pi/4)` is equal to(a)` 1/e-2 `(b) `1/2-e `(c) `2+1/e`(d)` e-2`A. (a)` 1/e-2 `B. (b) `1/2-e `C. (c) `2+1/e`D. (d)` e-2`

Answer» Correct Answer - (d)
Given differential equation
` dy/dx=(tan x-y)sec^(2)x`
`rArr dy/dx +(sec^(2) x)y=sec^(2)x tan x,`
which is linear differential equation of the form
`dy/dx+Py=Q,`
where `P=sec^(2) x and Q=sec^(2) x tan x`
`IF=e^(int sec^(2) x dx)=e^(tan x)`
So, solution of given dofferential equation is
`yxxIF= int(QxxIF)d+c`
`y(e^tanx)=int e^(tanx). sec^(2)xtan x dx +C`
Let `tan x=t rArr sec^(2) xdx =dt`
`ye^tanx =int e^(t) cdot t dt + C=te^(t)-int e ^(t) dt +C`
[using integration by parts method]
`= e^(t) (t-1)+C`
`rArr y cdot e^tan x=e^(tan x ) (tan x-1)+C [therefore t =tan x]`
`therefore y(0)=0`
` rArr 0=1(0-1)+C rArr C=1`
`therefore y cdot e^(tan x)=e^(tan x)(tan x-1)+1`
Now, at `x=-pi/4`
`ye^(-2) =e^(-1)(-1-1)+1`
` rArr ye^(-1) =2e^(-1)+1 rArr y=e-2`


Discussion

No Comment Found

Related InterviewSolutions