1.

If `z!=1`and `(z^2)/(z-1)`is real, then the pointrepresented by the complex number z lies(1)either on thereal axis or on a circle passing through the origin(2)on a circle withcentre at the origin(3)either on thereal axis or on a circle not passing through the origin(4)on the imaginaryaxisA. either on the real axis or on a circle passing thorugh the origin.B. on a circle with centre at the origin.C. either on the real axis or an a circle not possing through the origin .D. on the imaginary axis .

Answer» Correct Answer - A
`(z^(2))/(z-1) ` is purely real lt
`therefore (z^(2))/(z-1) = (barz^(2))/(barz-1)`
` rArr zbarzz - z^(2) = zbarzbar - barz^(-2)`
`rArr (z-barz) (|z|^(2) -( z+ barz))= 0`
Either `z = barz`
`rArr ` z lies on real axis.
or `|z|^(2) = z+z`
`rArr zbarz - z - barz = 0`
`rArr x^(2) + y^(2) -2x = 0`
Which represents a cricle passing throught origin.


Discussion

No Comment Found

Related InterviewSolutions