InterviewSolution
Saved Bookmarks
| 1. |
If `|z_1-z_0|=z_2-z_1=pi//2`, then find `z_0dot` |
|
Answer» Correct Answer - `(1)/(2){(i +1)z_(1) +(1-i)z_(2)}` Here, `|(z_(2)-z_(0))/(z_(0)-z_(1))| = 1 and amp ((z_(2)-z_(0))/(z_(0)-z_(1))) = (pi)/(2)` `therefore (z_(2)-z_(0))/(z_(0)-z_(1)) = 1{cos.(pi)/(2) + i sin .(pi)/(2)} =i` `rArr z_(2) -z_(0) = iz_(0) = iz_(0)` `rArr z_(2)+iz_(1) = (i+1)z_(0)` `or z_(0) = (z_(2) + iz_(1))/(1+i)` `=((z_(2) + iz_(1))(1-i))/(1^(2)+ 1^(2))` `=(1)/(2){(i+ 1)z_(1)+(1-i)z_(2)}` |
|