InterviewSolution
Saved Bookmarks
| 1. |
If `z_(1)`, `z_(2)` are complex numbers such that `Re(z_(1))=|z_(1)-2|`, `Re(z_(2))=|z_(2)-2|` and `arg(z_(1)-z_(2))=pi//3` , then `Im(z_(1)+z_(2))=`A. `2//sqrt(3)`B. `4//sqrt(3)`C. `2//sqrt(3)`D. `sqrt(3)` |
|
Answer» Correct Answer - B `(b)` Let `z_(1)=x_(1)+iy_(1)` and `z_(2)=x_(2)+iy_(2)` Given `Re(z_(1))=|z_(1)-2|`, `Re(z_(2))=|z_(2)-2|` `:.y_(1)^(2)-4x_(1)+4=0` and `y_(2)^(2)-4x_(2)+4=0` So that `(y_(1)-y_(2))/(x_(1)-x_(2))=(4)/(y_(1)+y_(2))` ……………`(i)` Given `arg(z_(1)-z_(2)=pi//3` `implies (y_(1)-y_(2))/(x_(1)-x_(2))=sqrt(3)` .........`(ii)` From `(i)` and `(ii) implies y_(1)+y_(2)=(4)/(sqrt(3))` |
|