InterviewSolution
Saved Bookmarks
| 1. |
If zeros of `x^3 - 3p x^2 + qx - r` are in A.P., then |
|
Answer» Let `alpha-beta, alpha` and `alpha+beta` are the zeroes of given polynomial . `:.` Sum of zeroes `=-((-3p))/(1)=3p` i.e., `alpha-beta+alpha+alpha+beta=3p rArr 3 alpha = 3p` `:. alpha=p " " ...(1)` Now, since `alpha` is one zero of the polynomial. `:.` On putting `x=alpha`, we get the remainder=0. `:. alpha^(3)-3palpha^(2)+qalpha-r=0` `rArr p^(3)-3p(p^(2))+qp-r=0 " "` [from (1)] `rArr p^(3)-3p^(3)+pq-r=0` `rArr 2p^(3)=pq-r`, which is the required relation in p, q and r. |
|