1.

In a ∆ABC, AD is the bisector of ∠A. (i) If AB = 6.4cm, AC = 8cm and BD = 5.6cm, find DC. (ii) If AB = 10cm, AC = 14cm and BC = 6cm, find BD and DC. (iii) If AB = 5.6cm, BD = 3.2cm and BC = 6cm, find AC. (iv) If AB = 5.6cm, AC = 4cm and DC = 3cm, find BC.

Answer»

(i) It is give that AD bisects ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

⇒ 5.6/DC = 6.4/8 

⇒ DC = 8×5.6/6.4 = 7 cm

(ii) It is given that AD bisects ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

Let BD be x cm. 

Therefore, DC = (6- x) cm 

⇒ x/ 6−x = 10/14 

⇒ 14x = 60-10x 

⇒ 24x = 60 

⇒ x = 2.5 cm 

Thus, BD = 2.5 cm 

DC = 6-2.5 = 3.5 cm 

(iii) It is given that AD bisector ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

BD = 3.2 cm, BC = 6 cm 

Therefore, DC = 6- 3.2 = 2.8 cm 

⇒ 3.2/2.8 = 5.6/AC 

⇒ AC = 5.6×2.8/3.2 = 4.9 cm

(iv) It is given that AD bisects ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

⇒ BD/3 = 5.6/4 

⇒ BD = 5.6×3/4 

⇒ BD = 4.2 cm 

Hence, BC = 3+ 4.2 = 7.2 cm



Discussion

No Comment Found

Related InterviewSolutions