

InterviewSolution
Saved Bookmarks
1. |
In a Δ ABC, If ∠A = 60°, ∠B = 80° and the bisectors of ∠B and ∠C meet at O, then ∠BOC =A. 60°B. 120°C. 150°D. 30° |
Answer» In ΔABC ∠A + ∠B + ∠C = 180° 60° + ∠B + ∠C = 180° ∠B + ∠C = 120° \(\frac{1}{2}\)∠B + \(\frac{1}{2}\)∠C = 60°(i) ∠BOC + ∠OBC + ∠OCB = 180° ∠BOC + \(\frac{1}{2}\)∠B + \(\frac{1}{2}\)∠C = 180° ∠BOC + \(\frac{1}{2}\)(∠B + ∠C) = 180° ∠BOC + 60° = 180°[From (i)] ∠BOC = 120° |
|