

InterviewSolution
Saved Bookmarks
1. |
In a `Delta ABC` line DE is parallel to BC. Prove that `(AD)/(AB) = (DE)/(BC) = (AD)/ (AC)` |
Answer» As, `DE` and `BC` are parallel, `:. /_ABC = /_ADE and /_ACB = /_AED` Now, in `Delta ADE` and `Delta ABC`, `/_DAE = /_BAC` (Common angle) `/_ABC = /_ADE` ` /_ACB = /_AED` From Angle-Angle-Angle similarity rule, `Delta ADE ~= Delta ABC` `:. (AD)/(AB) = (DE)/(BC) = (AE)/(AC)` |
|