1.

In a llgram ABCD show that angle bisector ao angle A and B intersect at 90°

Answer» Given: ABCD is a llgm.Ao is the bisector of angle A\xa0BO is the bisector of angle BTo prove : angle o= 90°Proof: Angle A+ Angle B=180°(co interior angles )Now,1/2A+1/2B =90°Now in triangle AOB,angle ABO + angle BAO + angle OAB = 180° ( ANGLE SUM PROPERTY )Angle OAB= 180°- (angle BAO + angle ABO )Angle OAB= 180° -(90°) [above proved]Angle OAB= 90°\xa0 HENCE, PROVED
A=BA=90Then B=90 Solved


Discussion

No Comment Found