1.

In a p-n junction diode, the current I can be expressed as I=I_(0)"exp"((eV)/(2k_(B)T)-1) where I_(0) is called the reverse saturation current, V is the voltage across the diode and is positive for forward bias and negative for reverse bias, and I is the current through the diode, k_(B) is the Boltzmann constant (8.6xx10^(-5)eV//K) and T is the absolute temperature. If for a given diode I_(0)=5xx10^(-12)A and T = 300 K, then (a) What will be the forward current at a forward voltage of 0.6 V ? (b) What will be the increase in the current if the voltage across the diode is increased to 0.7 V ? (c ) What is the dynamic resistance? (d) What will be the current if reverse bias voltage changes from 1 V to 2 V ?

Answer»

Solution :Current passing through junction diode,
`I=I_(0)["exp"((EV)/(k_(B)T))-1]`
where `I_(0)=` Reverse saturated current `=5xx10^(-12)A`
`T=300K`
`k_(B)=8.6xx10^(-5)eVK^(-1)`
`=8.6xx10^(-5)xx1.6xx10^(-19)JK^(-1)`
`=13.76xx10^(-24)JK^(-1), 1 eV=1.6xx10^(-19)JK^(-1)`
(a) When V = 0.6 V then
`I=I_(0)["exp"((eV)/(k_(B)T))-1]""...(1)`
but `(eV)/(k_(B)T)=(1.6xx10^(-19)xx0.6)/(13.76xx10^(-24)xx300)=0.23255xx10^(2)`
`~~23.26`
`therefore` From equation (1),
`I_(1)=I_(0)["exp"(23.26)-1]A`
`=5xx10^(-12)["exp"(23.26)-1]A`
`=5xx10^(-12)[e^(23.26)-1]A`
`=5xx10^(-12)[log(0.4343xx23.26)-1]A`
`=5xx10^(-12)[1.2586xx10^(10)-1]A`
Neglecting 1 compare to `1.2586xx10^(10)`
`=5xx10^(-12)xx1.2586xx10^(10)A`
`therefore I_(1)=0.06293 A`
(b) When V = 0.7V then
From equation (1),
Taking `(eV)/(k_(B)T)=(1.6xx10^(-19)xx0.7)/(13.76xx10^(-24)xx300)=27.13`
`I_(2)=I_(0)["exp"((eV)/(k_(B)T))-1]A`
`=5xx10^(-12)[27.13log(0.4343)-1]A`
`=5xx10^(-12)[6.07xx10^(11)-1]A`
Neglecting 1 compare to `6.07xx10^(11)`
`=5xx10^(-12)xx6.07xx10^(11)A`
`therefore I_(2)=3.035A`
`therefore ` Increase in current `DeltaI=I_(2)-I_(1)`
`=3.0350-0.06293`
`=2.97207A`
`~~2.972`A
(c ) `DeltaV=0.7-0.6=0.1V`
and `DeltaI=2.972A`
`therefore` Dynamic variable resistance,
`r_(d)=(DeltaV)/(DeltaI)=(0.1)/(2.972)=0.03364Omega`
`therefore r_(d)~~0.0336Omega`
(d) When voltage varies from 1 V to 2V then current `I_(0)=5xx10^(-12)`A remains constant it SHOWS that in reverse bias the dynamic resistance is infinite.


Discussion

No Comment Found

Related InterviewSolutions