1.

In A Right-angled Triangle, The Square Of The Hypotenuse Is Twice The Product Of The Other Two Sides. Then One Of The Acute Angles Of The Triangle Is…

Answer»

3 sides are p,q, SQRT(2PQ).

now if it is sright-angle then 2pq=p^2+q^2;

cos(angle)=sqrt(p/2q);

sin(angle)=sqrt(q/2p);

So sin(2*angle)=2*sin(angle)*cos(angle);

sin(2*angle)=1;

So angle=45;

3 sides are p,q, sqrt(2pq).

now if it is sright-angle then 2pq=p^2+q^2;

cos(angle)=sqrt(p/2q);

sin(angle)=sqrt(q/2p);

So sin(2*angle)=2*sin(angle)*cos(angle);

sin(2*angle)=1;

So angle=45;



Discussion

No Comment Found