Saved Bookmarks
| 1. |
In A Right-angled Triangle, The Square Of The Hypotenuse Is Twice The Product Of The Other Two Sides. Then One Of The Acute Angles Of The Triangle Is… |
|
Answer»
now if it is sright-angle then 2pq=p^2+q^2; cos(angle)=sqrt(p/2q); sin(angle)=sqrt(q/2p); So sin(2*angle)=2*sin(angle)*cos(angle); sin(2*angle)=1; So angle=45; 3 sides are p,q, sqrt(2pq). now if it is sright-angle then 2pq=p^2+q^2; cos(angle)=sqrt(p/2q); sin(angle)=sqrt(q/2p); So sin(2*angle)=2*sin(angle)*cos(angle); sin(2*angle)=1; So angle=45; |
|