1.

In a triangle `A B C ,/_C=pi/2dot`If `tan(A/2)a n dtan(B/2)`are the roots of the equation `a x^2+b x+c=0,(a!=0),`then the value of `(a+b)/c`(where `a , b , c ,`are sides of ``opposite to angles `A , B , C ,`respectively) is

Answer» Correct Answer - 1
`tan ((A)/(2)) + tan ((B)/(2)) = - (b)/(a)`
`tan ((A)/(2)) xx tan ((B)/(2)) = (c ) /(a)`
`A + B = 90^(@) or (A+B)/(2) = 45^(@)`
`rArr tan ((A+B)/(2)) =1= (-(b)/(a))/(1-(c )/(a))`
or `1- (c )/(a) = - (b)/(a)`
or ` a +b = c`
or `(a+b)/(c ) =1`.


Discussion

No Comment Found

Related InterviewSolutions