1.

In a Triangle ABC, if Cot A : Cot B : Cot C = 1:4:15 Then The Greatest Angle is?

Answer»

cot A : cot B : cot C = 1 : 4 : 15

Let cot A = x, cot B = 4x and cot C = 15x

⇒ A = cot-1x, B = cot-14x + cot-115x = 180°

(\(\because\) cot-1 x + cot-1 y = cot-1(\(\frac{xy-1}{x+y}\)))

⇒ cot-1\(\left(\cfrac{\frac{4x^2-1}{5x}\times15-1}{\frac{4x^2-1}{5x}+15x}\right)\)= 180°

⇒  cot-1\(\left(\cfrac{\frac{15x(4x^2-1)-5x}{5x}}{\frac{4x^2-1+75x^2}{5x}}\right)\)= 180°

⇒ \(\frac{15x(4x^2-1)-5x}{79x^2-1}\) = cot 180° = \(\frac{cos180^{\circ}}{sin180^{\circ}}\) = \(\frac{-1}0\)

\(\therefore\) 79x2 - 1 = 0

⇒ x = \(\frac{1}{\sqrt{79}}\)

Now, A = cot-1x = cot-1\((\frac1{\sqrt{79}})\)

B = cot-14x = cot-1\((\frac{4}{\sqrt{79}})\) 

C = cot-115x = cot-1\((\frac{15}{\sqrt{79}})\)

A > B > C 

(\(\because\) cot-1 x is a decreasing function and x < 4x < 15x)

Greatest angle is A.



Discussion

No Comment Found

Related InterviewSolutions