| 1. |
In a Triangle ABC, if Cot A : Cot B : Cot C = 1:4:15 Then The Greatest Angle is? |
|
Answer» cot A : cot B : cot C = 1 : 4 : 15 Let cot A = x, cot B = 4x and cot C = 15x ⇒ A = cot-1x, B = cot-14x + cot-115x = 180° (\(\because\) cot-1 x + cot-1 y = cot-1(\(\frac{xy-1}{x+y}\))) ⇒ cot-1\(\left(\cfrac{\frac{4x^2-1}{5x}\times15-1}{\frac{4x^2-1}{5x}+15x}\right)\)= 180° ⇒ cot-1\(\left(\cfrac{\frac{15x(4x^2-1)-5x}{5x}}{\frac{4x^2-1+75x^2}{5x}}\right)\)= 180° ⇒ \(\frac{15x(4x^2-1)-5x}{79x^2-1}\) = cot 180° = \(\frac{cos180^{\circ}}{sin180^{\circ}}\) = \(\frac{-1}0\) \(\therefore\) 79x2 - 1 = 0 ⇒ x = \(\frac{1}{\sqrt{79}}\) Now, A = cot-1x = cot-1\((\frac1{\sqrt{79}})\) B = cot-14x = cot-1\((\frac{4}{\sqrt{79}})\) C = cot-115x = cot-1\((\frac{15}{\sqrt{79}})\) A > B > C (\(\because\) cot-1 x is a decreasing function and x < 4x < 15x) Greatest angle is A. |
|