1.

In a YDSE experiment, the distance between the slits & the screen is 100 cm. For a certain distance between the slits, an interference pattern is observed on the screen with the fringe width 0.25 mm. When the distance between the slits is increased by Deltad=1.2 mm, the fringe width decreased to n=2//3 of the original value. In the final position, a thin glass plate of refractive index 1.5 is kept in front of one of the slits & the shift of central maximum is observed to be 20 fringe width. Find the thickness of the plate & wavelength of the incident light.

Answer»


SOLUTION :Clearly `beta_(INITIAL)=(lambdaD)/(d_(i))`
`rArr 0.25xx10^(-3)=(lambda)/(d)xx1 m`
`rArr (lambda)/(d)=2.5xx10^(-4)…………..(1)`
Afterwards :
`(2)/(3) beta_(i) =(lambdaD)/((d+Deltad))`
`rArr (lambda)/(d+Deltad)=(2)/(3)xx(2.5xx10^(-4))/(1)..............(2)`
Dividing `(1) and (2)`
`(d+Deltad)/(d)=(3)/(2) rArr d=2 (Deltad) =2.4 mm`.
`& lambda=2.4xx2.5xx10^(-7)m = 600 nm`.
Now `P` becomes central maxima.
`rArr` for point `P : d sintheta =(mu-1)t`
`rArr d. TANTHETA approx (mu-1)t`
`rArr d(20beta)/(D) =(mu-1)t`
`rArr (d)/(D)xx(20xxlambdaD)/(d) =(1.5-1)t`
`rArr t=(20lambda)/(0.5) =(20xx600xx10^(-9))/(0.5)=24 MUM`.


Discussion

No Comment Found

Related InterviewSolutions