1.

In an equilateral △ABC,AD ⊥BC, prove that \(AD^2=38D^2\),

Answer»

We have 

⊿ ABC is an equilateral triangle and AD⊥BC 

In ⊿ ADB⊿ ADC 

∠ADB = ∠ADC = 90° AB = AC (Given) 

AD = AD (Common) 

⊿ ADB ≅⊿ ADC (By RHS condition) 

∴ BD = CD = BC/2 ……. (i) 

In ⊿ ABD 

BC= AD2 + BD

BC2 = AD+ BD2 [Given AB = BC] 

(2BD)=  AD2 + BD2 [From (i)] 

4BD- BD2 = AD2 

AD2 = 3BD2



Discussion

No Comment Found

Related InterviewSolutions