

InterviewSolution
1. |
In any ΔABC, prove that a2 (cos2B – cos2C) + b2 (cos2C – cos2A) + c2 (cos2A – cos2B) = 0 |
Answer» To prove a2 (cos2B – cos2C) + b2 (cos2C – cos2A) + c2 (cos2A – cos2B) = 0 From left hand side, = a2 (cos2B – cos2C) + b2 (cos2C – cos2A) + c2 (cos2A – cos2B) = a2 ((1 - sin2B) – (1 - sin2C)) + b2 ((1 - sin2C) – (1 - sin2A)) + c2 ((1 - sin2A) – (1 - sin2B)) = a2 ( - sin2B + sin2C) + b2 ( - sin2C + sin2A) + c2 ( - sin2A + sin2B) We know that, a/sinA = b/sinB = c/sinC = 2R where R is the circumradius. Therefore, a = 2R sinA.....(a) similarity, b = 2R sinB and C = 2R sinC So, = 4R2 [ sin2A( - sin2B + sin2C) + sin2B( - sin2C + sin2A) + sin2C( - sin2A + sin2B) = 4R2 [ - sin2Asin2B + sin2Asin2C – sin2Bsin2C + sin2Asin2B – sin2Asin2C + sin2Bsin2C ] = 4R2 [0] = 0 [Proved] |
|