1.

In any ΔABC, prove that a2 (cos2B – cos2C) + b2 (cos2C – cos2A) + c2 (cos2A – cos2B) = 0

Answer»

To prove

a2 (cos2B – cos2C) + b2 (cos2C – cos2A) + c2 (cos2A – cos2B) = 0

From left hand side, 

= a2 (cos2B – cos2C) + b2 (cos2C – cos2A) + c2 (cos2A – cos2B) 

= a2 ((1 - sin2B) – (1 - sin2C)) + b2 ((1 - sin2C) – (1 - sin2A)) + c2 ((1 - sin2A) – (1 - sin2B)) 

= a2 ( - sin2B + sin2C) + b2 ( - sin2C + sin2A) + c2 ( - sin2A + sin2B)

We know that, a/sinA = b/sinB = c/sinC = 2R where R is the circumradius.

Therefore,

a = 2R sinA.....(a)

similarity, b = 2R sinB and C = 2R sinC

So,

= 4R2 [ sin2A( - sin2B + sin2C) + sin2B( - sin2C + sin2A) + sin2C( - sin2A + sin2B) 

= 4R2 [ - sin2Asin2B + sin2Asin2C – sin2Bsin2C + sin2Asin2B – sin2Asin2C + sin2Bsin2C ] 

= 4R2 [0] 

= 0 [Proved]



Discussion

No Comment Found

Related InterviewSolutions