1.

In any ΔABC, prove that a2 sin ( B – C ) = (b2 – c2) sin A

Answer»

To prove: a2 sin ( B – C ) = (b2 – c2) sin A 

We know that, a/sinA = b/sinB = c/sinC = 2R where R is the circumradius.

Therefore, 

a = 2R sinA ---- (a) 

Similarly, b = 2R sinB and c = 2R sinC 

From Right hand side,

= (b2 – c2) sin A 

= {(2R sinB)2 – (2R sinC)2 } sinA 

= 4R2 ( sin2B – sin2C )sinA 

We know, sin2B – sin2C = sin(B + C)sin(B – C) 

So,

= 4R2 (sin(B + C)sin(B – C))sinA 

= 4R2 (sin(π – A)sin(B – C))sinA [ As, A + B + C = π] 

= 4R2 (sinAsin(B – C))sinA [ As, sin(π −  θ) = sin θ ] 

= 4R2sin2A sin(B – C) 

= a 2sin(B – C) [From (a)] 

= Left hand side. [Proved]



Discussion

No Comment Found

Related InterviewSolutions